
January, 2003

Advisor Answers

Docking IDE windows

VFP 8

Q: I like the docked windows in VFP 7, but I could never get them to
behave between sessions. Does VFP 8 improve this behavior?

–Name withheld by request

A: Back in the December '01 issue, I wrote about the new docking

features of VFP 7, and concluded that they weren't quite ready for
prime-time. Fortunately, VFP 8 includes major improvement in docking

of IDE windows.

First, VFP 8 remembers the docking status and position of the

windows. So, if you have several IDE windows docked when you close
VFP, the next time you open it, those windows open up just as you left

them. This change alone means that you may never need to dig any
deeper into the new capabilities.

However, if you want absolute control over the docking of IDE

windows, you'll want to explore the new DOCK WINDOW command.
This command lets you dock and undock IDE windows and toolbars.

You can dock things to the borders of the VFP desktop or to other IDE
windows. Once windows are docked together, you can dock the whole

group to the VFP borders. The command provides for both link docking
and tab docking.

The first question is which windows are affected; the list is longer than
you might think. All of VFP's built-in toolbars can be docked to the

sides of the VFP window. They can't be link docked or tab docked,
however.

The Debugger windows can be docked. When the Debugger is set to
the FoxPro frame, Debugger windows can be tab docked and link

docked with any other dockable windows. In the Debug frame, they
can be docked to the borders of that frame, but not link docked or tab

docked.

What you might consider the three principle IDE windows, the
Command window, the Data Session window, and the Property sheet,

are all dockable, both to the borders of the VFP desktop, and using tab

docking and link docking.

Finally, the Document View window can be docked, either at the

borders or with other windows through tab docking and link docking.

So, how do you dock windows? You can do it either interactively or

with the DOCK WINDOW command. I discussed interactive docking of
windows in the 12/01 article, so I won't go over that again. Instead,

let's look at DOCK WINDOW.

The syntax for this command is:

DOCK WINDOW WindowName POSITION nPosition
 [WINDOW TargetWindowName]
 | WINDOW TargetWindowName

The syntax is a little hard to follow, but essentially you have three
choices. First, you can dock a window to or undock a window from a

VFP border using:

DOCK WINDOW WindowName POSITION nPosition

Second, you can tab dock a window to another window using:

DOCK WINDOW WindowName WINDOW TargetWindowName

Finally, you can either link dock or tab dock a window to another
using:

DOCK WINDOW WindowName POSITION nPosition ;
 WINDOW TargetWindowName

The POSITION value determines where a window is docked and, in

some cases, which kind of docking is used. The values (shown in Table
1) can be divided into three groups.

Table 1 Where to dock–The value of nPosition determines whether a window is
docked or undocked, where a window is docked, and in some cases, what type of
docking is used.

nPosition Meaning

0 If WINDOW clause is omitted, dock at top of VFP or Debug

frame. If WINDOW clause is included, link dock with the
specified target window, putting this window at the top.

nPosition Meaning

1 If WINDOW clause is omitted, dock at left of VFP or Debug
frame. If WINDOW clause is included, link dock with the

specified target window, putting this window at the left.

2 If WINDOW clause is omitted, dock at right of VFP or
Debug frame. If WINDOW clause is included, link dock

with the specified target window, putting this window at
the right.

3 If WINDOW clause is omitted, dock at bottom of VFP or
Debug frame. If WINDOW clause is included, link dock

with the specified target window, putting this window at

the bottom.

4 Tab dock this window with the specified target window. If

the WINDOW clause is omitted, an error is generated.

-1 Undock this window. If the window is part of a group of

windows docked together, remove it from the group. If the

window is docked to a border, undock it from that border.
If the window is part of a group that's docked at a border,

remove it from the group and undock it. If the WINDOW
clause is included, an error is generated.

-2 If the window is part of a group of windows (tab docked or
link docked together) that's docked to the VFP border,

undock the group as a whole, leaving the windows tab
docked or link docked as they are. If the window is not

part of a group, but is docked at the VFP or Debug frame
border, undock it. If the window is not docked, the

command is ignored. If the WINDOW clause is included,

an error is generated.

-3 If the window is part of a tab docked group that's link

docked to additional windows, remove the whole tab
docked group from the link docked group. This occurs

whether the containing link docked group is docked to a
border or not. In all other cases, behave as for nPosition =

2. If the WINDOW clause is included, an error is
generated.

The first group, 0 through 3, lets you dock along borders. If the

WINDOW TargetWindowName clause is omitted, the specified window
is docked at a VFP border (or, for debugger windows in the Debug

frame, at the Debug frame border). For example, issuing:

DOCK WINDOW View POSITION 2

docks the Data Session window (known as "View" for historical
reasons) to the right side of the VFP desktop. If the WINDOW clause is

included, the specified window is link docked with the target window.
So, this command:

DOCK WINDOW View POSITION 2 WINDOW Command

link docks the Data Session and Command windows with the Data

Session window on the right, as in Figure 1.

Figure 1 Link docking–In VFP 8, you can link dock windows using the DOCK
WINDOW command.

The second "group" of values has only one member. When nPosition is
4, the specified windows are tab docked. For example, issuing:

DOCK WINDOW View POSITION 4 WINDOW Command

tab docks the Data Session and Command windows, with the result

shown in Figure 2

Figure 2 Tab docking–Specifying 4 for nPosition results in tab docking.

Finally, the third group of values for nPosition deals with undocking of
windows. Passing –1 undocks the window, no matter where it's docked

or to what. But sometimes, you want to be more subtle than that. If

you have several windows docked together, and that group is docked
to a border, you may want to undock the group as whole rather than

the individual windows; use –2 for nPosition, in that case. It can be
even more complicated. If you have some windows tab docked, and

that group of tab docked windows is link docked to other windows (as
in Figure 3), you need a way to extract the whole group of tab docked

windows from the link docked group; in that case, specify –3 for
nPosition.

Figure 3 Mixed docking–You can link dock a tab docked group with another window,
or even with another tab docked group. To take groups like this apart
programmatically, you need the –2 and –3 values for the POSITION clause.

A few more notes. When you issue DOCK WINDOW for any window, its

status is changed to dockable. That is, you don't need to issue
WDOCKABLE() first to make a window dockable.

Once you've tab docked or link docked a group of windows, you can
dock the whole group by issuing DOCK WINDOW for any member. So,

to create the configuration in Figure 3, you can use these two
commands:

DOCK WINDOW View POSITION 4 WINDOW Command
DOCK WINDOW View POSITION 2 WINDOW Properties

To then dock the whole shebang at the top, use:

DOCK WINDOW View POSITION 0

Another nice change in VFP 8 (shown in Figure 4) is that when you

dock a link docked group to a VFP border, the outer window
disappears.

Figure 4 Docking link docked groups to borders–In VFP 8, the outer window
containing a link docked group disappears when you dock that group to one of VFP's
borders.

Finally, since you can now manipulate docking programmatically, you

need a way to check the current status. The new ADOCKSTATE()
function fills an array with information about docked windows.

Now that we have real control over docking and undocking, and

persistence between sessions, it's worth spending some time
experimenting with different configurations to figure out what set-up is

most productive for you.

–Tamar

